Refine Your Search

Topic

Author

Search Results

Journal Article

Influence of Ca-, Mg- and Na-Based Engine Oil Additives on Abnormal Combustion in a Spark-Ignition Engine

2015-11-17
2015-32-0771
One issue of downsized and supercharged engines is low-speed pre-ignition (LSPI) that occurs in the low-speed and high-load operating region. One proposed cause of LSPI is the influence of the engine oil and its additives. However, the effect of engine oil additives on pre-ignition and the mechanism involved are still not fully understood. This study investigated the influence of engine oil additives on abnormal combustion in a spark-ignition engine. A four-stroke air-cooled single-cylinder engine with a side valve arrangement was used in conducting combustion experiments. The research methods used were in-cylinder pressure analysis, in-cylinder visualization and absorption spectroscopic analysis. Engine oil additives were mixed individually at a fixed concentration into a primary reference fuel with an octane number of 50 and their effect on knocking was investigated.
Technical Paper

Influence of Autoignition and Pressure Wave Behavior on Knock Intensity Based on Multipoint Pressure Measurement and In-Cylinder Visualization of the End Gas

2018-10-30
2018-32-0001
In this study, the effect of autoignition behavior in the unburned end-gas region on pressure wave formation and knock intensity was investigated. A single-cylinder gasoline engine capable of high-speed observation of the end gas was used in the experiments. Visualization in the combustion chamber and spectroscopic measurement of light absorption by the end gas were carried out to analyze autoignition behavior in the unburned end-gas portion and the reaction history before autoignition. The process of autoignition and pressure wave growth was investigated by analyzing multipoint pressure histories. As a result, it was found that knocking intensity increases through interaction between autoignition and pressure waves.
Technical Paper

Improvement of Engine Performance With Lean Mixture Ignited By Diesel Fuel Injection and Internal Egr

2000-06-12
2000-05-0076
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. The internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the mixture temperature. The test engine was a 4-stroke, single- cylinder direct-injection diesel engine. The cooling system was forced-air cooling and displacement volume was about 211 (cm3). The compression ratio was about 19.9:1. The experiment was made under constant engine speed of 3000 (r/min). The boost pressure was maintained at 101.3 (kPa). Five values of mass flow rate of diesel fuel injection were selected from 0.060 (g/s) to 0.167 (g/s) and five levels of back pressure: 0), 26.7, 53.3, 80.0 and 106.6 (kPa) were selected for the experiment. The effect of internal EGR is varied by the back pressure level.
Technical Paper

Experimental and Numerical Study of HCCI Combustion using Cooled EGR

2015-11-17
2015-32-0770
Unresolved issues of Homogeneous Charge Compression Ignition (HCCI) combustion include an extremely rapid pressure rise on the high load side and resultant knocking. Studies conducted to date have examined ways of expanding the region of stable HCCI combustion on the high load side such as by applying supercharging or recirculating exhaust gas (EGR). However, the effect of applying EGR gas to supercharged HCCI combustion and the mechanisms involved are not fully understood. In this study, the effect of EGR gas components on HCCI combustion was investigated by conducting experiments in which external EGR gas was applied to supercharged HCCI combustion and also experiments in which nitrogen (N2) and carbon dioxide (CO2) were individually injected into the intake air pipe to simulate EGR gas components. In addition, HCCI combustion reactions were analyzed by conducting chemical kinetic simulations under the same conditions as those of the experiments.
Technical Paper

Engine Performance of Lean Methanol-Air Mixture Ignited by Diesel Fuel Injection Applied with Internal EGR

2000-06-19
2000-01-2012
The uniform lean methanol-air mixture was provided to the diesel engine and was ignited by direct diesel fuel injection. In this study, the internal EGR is added to this ignition method in order to activate the fuel in the mixture and to increase the temperature of the mixture before the ignition. It is confirmed that the lean methanol-air mixture of air-fuel ratio between 130 and 18 could be ignited and burned when the back pressure of 80 [kPa] is added. The ignition and combustion characteristics can be improved by the internal EGR, however the engine performance and NOx emission deteriorated.
Journal Article

Effects of Ignition Timing and Fuel Chemical Composition on Autoignition Behavior and Knocking Characteristics under Lean Conditions

2022-01-09
2022-32-0070
This study focused on autoignition behavior and knocking characteristics. Using an optically accessible engine, autoignition behavior was observed over the entire bore area, and the relationship between autoignition behavior and knocking characteristics was clarified on the basis of visualized combustion images and frequency analysis of the in-cylinder pressure waveform. In addition, chemical kinetic simulations were used to investigate the effects of different fuel chemical compositions on combustion and autoignition characteristics under equivalent octane ratings. The results showed that the rate of autoignition development has a significant effect on knocking intensity. In addition, the ρ1,0 mode is the dominant vibration mode caused by knocking, regardless of the location of autoignition. It can be inferred that strong knocking is caused by multiple vibration modes.
Technical Paper

Effects of Hydrocarbon with Different Ignition Properties and Hydrogen Blended Fuels on Autoignition and Combustion in an IC Engine

2023-10-24
2023-01-1802
Hydrogen has attracted attention as one of the key fuels for making internal combustion engines carbon neutral. However, the combustion characteristics of hydrogen differ greatly from those of conventionally used hydrocarbons. Therefore, in order to develop next-generation internal combustion engines that operate on hydrogen, it is first necessary to have a thorough understanding of the combustion characteristics of hydrogen. Engines that can take maximum advantage of those characteristics should be developed on the basis of that knowledge. Toward that end, the purpose of this study was to investigate the fundamental combustion characteristics of hydrogen in a test engine. This paper presents the results of an investigation of the effects on low-temperature oxidation reactions and autoignition when hydrogen was blended into dimethyl ether (DME) [1, 2], a gaseous hydrocarbon fuel.
Technical Paper

Effect of EGR-Induced Hot Residual Gas on Combustion when Operating a Two-Stroke Engine on Alcohol Fuels

2000-10-16
2000-01-2972
In this research, the effect of high-temperature residual gas, resulting from the application of a certain level of EGR, on combustion was investigated using a two-stroke engine and alcohol fuels (ethanol and methanol) and gasoline as the test fuels. Measurements were made of the light emission intensity of the OH radical on the intake and exhaust port sides of the combustion chamber and of the combustion chamber wall temperature (spark plug washer temperature) and the exhaust gas temperature. Data were measured and analyzed in a progression from normal combustion to autoignited combustion to preignition and to knocking operation.
Technical Paper

Combustion Characteristics and Exhaust Gas Emissions of Lean Mixture Ignited by Direct Diesel Fuel Injection with Internal EGR

1999-09-28
1999-01-3265
The uniform lean gasoline-air mixture was provided to the diesel engine and was ignited by the direct diesel fuel injection. In this study, the internal EGR is add to this ignition method in order to activate the fuel in the mixture before the ignition. It is confirmed that the lean mixture of air-fuel ratio between 150 and 40 could be ignited and burned by this ignition method when the back pressure of 80 [kPa] is added, and the burning period is shorted by internal EGR. However, as the back pressure increases, NOx concentration is increased by the high temperature residual gas.
Technical Paper

Application of Newly Developed Cellulosic Liquefaction Fuel for Diesel Engine

2009-11-03
2009-32-0132
A new bio-fuel i.e. the cellulosic liquefaction fuel (CLF) was developed for diesel engines. CLF was made from woods by direct liquefaction process. When neat CLF was supplied to diesel engine, the compression ignition did not occur, so that blend of CLF and diesel fuel was used. The engine could be operated when the mixing ratio of CLF was up to 35 wt%. CO, HC and NOx emissions were almost the same as those of diesel fuel when the mixing ratio of CLF was less than 20 wt% whereas the thermal efficiency slightly decreases with increase in CLF mixing ratio.
Technical Paper

Analysis of the Combustion Characteristics of a HCCI Engine Operating on DME and Methane

2007-10-30
2007-32-0041
The Homogeneous Charge Compression Ignition (HCCI) engine has attracted much interest in recent years because it can simultaneously achieve high efficiency and low emissions. However, it is difficult to control the ignition timing with this type of engine because it has no physical ignition mechanism. Varying the amount of fuel supplied changes the operating load and the ignition timing also changes simultaneously. The HCCI combustion process also has the problem that combustion proceeds too rapidly. This study examined the possibility of separating ignition timing control and load control using an HCCI engine that was operated on blended test fuels of dimethyl ether (DME) and methane, which have vastly different ignition characteristics. The influence of the mixing ratios of these two test fuels on the rapidity of combustion was also investigated.
Journal Article

Analysis of Supercharged HCCI Combustion Using a Blended Fuel

2011-11-08
2011-32-0521
Homogeneous Charge Compression Ignition (HCCI) combustion has attracted much interest as a combustion system that can achieve both low emissions and high efficiency. But the operating region of HCCI combustion is narrow, and it is difficult to control the auto-ignition timing. This study focused on the use of a two-component fuel blend and supercharging. The blended fuel consisted of dimethyl ether (DME), which has attracted interest as alternative fuel for compression-ignition engines, and methane, the main component of natural gas. A spectroscopic technique was used to measure the light emission of the combustion flame in the combustion chamber in order to ascertain the combustion characteristics. HCCI combustion characteristics were analyzed in detail in the present study by measuring this light emission spectrum.
Technical Paper

Analysis of Supercharged HCCI Combustion Using Low-Carbon Alternative Fuels

2017-11-05
2017-32-0085
This study investigated the effects of recirculated exhaust gas (EGR) and its principal components of N2, CO2 and H2O on moderating Homogeneous Charge Compression Ignition (HCCI) combustion. Experiments were conducted using two types of gaseous fuel blends of DME/propane and DME/methane as the test fuels. The addition rates of EGR, N2, CO2 and H2O were varied and the effects of each condition on HCCI combustion of propane and methane were investigated. The results revealed that the addition of CO2 and H2O had the effect of substantially delaying and moderating rapid combustion. The addition of N2 showed only a slight delaying and moderating effect. The addition of EGR had the effect of optimally delaying the combustion timing, while either maintaining or increasing the indicated mean effective pressure and indicated thermal efficiency ηi.
Technical Paper

Analysis of Knocking in an SI Engine based on In-cylinder: Spectroscopic Measurements and Visualization

2010-09-28
2010-32-0092
There are strong demands today to further improve the thermal efficiency of internal combustion engines against a backdrop of various environmental issues, including rising carbon dioxide (CO2) emissions and global warming. One factor that impedes efforts to improve the thermal efficiency of spark ignition engines is the occurrence of knocking. The aim of this study was to elucidate the details of knocking based on spectroscopic measurements and visualization of phenomena in the combustion chamber of a test engine that was operated on three primary reference fuels with different octane ratings (0 RON, 30 RON, and 50 RON). The ignition timing was retarded in the experiments to delay the progress of flame propagation, making it easier to capture the behavior of low-temperature oxidation reactions at the time knocking occurred.
Technical Paper

Analysis of Intermediate Combustion Products in Preflame Reactions in a Spark-Ignition Engine

1997-10-27
978516
The use of a higher compression ratio is desirable for improving the thermal efficiency and specific power of spark-ignition engines, but it gives rise to a problem of engine knock. In the present research, an investigation was made of the role of the preflame reaction region of a spark-ignition engine in the occurrence of autoignition. Emission spectroscopy was used to measure the behavior of formaldehyde (HCHO) in a cool flame. In addition, measure the behavior of the faint light attributed to the HCO radical in a blue flame with the concurrent measurement of the OH radical. The emission waveforms measurements obtained for HCHO when n-heptane (ORON) was used as the fuel, It is thought that these tendencies correspond to the passage and degeneracy of a cool flame. Further, the emission waveforms measured for the HCO radical when blended fuels (6ORON, 8ORON) were correspond to that of a blue flame.
Journal Article

Analysis of Interaction between Autoignition and Strong Pressure Wave Formation during Knock in a Supercharged SI Engine Based on High Speed Photography of the End Gas

2017-11-15
2017-32-0119
Engine knock is the one of the main issues to be addressed in developing high-efficiency spark-ignition (SI) engines. In order to improve the thermal efficiency of SI engines, it is necessary to develop effective means of suppressing knock. For that purpose, it is necessary to clarify the mechanism generating pressure waves in the end-gas region. This study examined the mechanism producing pressure waves in the end-gas autoignition process during SI engine knock by using an optically accessible engine. Occurrence of local autoignition and its development process to the generation of pressures waves were analyzed under several levels of knock intensity. The results made the following points clear. It was observed that end-gas autoignition seemingly progressed in a manner resembling propagation due to the temperature distribution that naturally formed in the combustion chamber. Stronger knock tended to occur as the apparent propagation speed of autoignition increased.
Journal Article

Analysis of Combustion Characteristics and Efficiency Improvement of a Supercharged HCCI Engine Achieved by Using the Different Ignition Characteristics of Gaseous Fuels

2012-10-23
2012-32-0075
This study focused on the use of a two-component fuel blend and supercharging as possible means of overcoming these issues of HCCI combustion. Low-carbon gaseous fuels with clean emissions were used as the test fuels. The specific fuels used were dimethyl ether (DME, cetane number of 55 or higher) that autoignites easily And exhibits pronounced low-temperature oxidation reactions, methane (cetane number of 0) that does not autoignite readily and is the main component of natural gas which is regarded as petroleum substitute, and propane (cetane number of 5) that is a principal component of liquefied petroleum gas. The results of previous investigations have shown that the use of a blended fuel of DME and methane produces a two-stage main combustion process under certain operating conditions, with the result that combustion is moderated.
Technical Paper

An Application of Cellulosic Liquefaction Fuel for Diesel Engine - Improvement of Fuel Property by Cellulosic Liquefaction with Plastics -

2013-10-15
2013-32-9174
There are few investigations to change wood biomasses to the industrially available energy, so that a new conversion technology of biomass to liquid fuel has been established by the direct liquefaction process. However, cellulosic liquefaction fuel (for short CLF) cold not mixed with diesel fuel. In this study, the plastic was mixed with wood to improve the solubility of CLF to diesel fuel. CLF made by the direct co-liquefaction process could be stably and completely mixed with diesel fuel in any mixing ratio and CLF included 2 wt.% of oxygen. The test engine was an air-cooled, four-stroke, single cylinder, direct fuel injection diesel engine. In the engine starting condition test, the ignition timing of 5 wt.% CLF mixed diesel fuel was slightly delayed at immediately after the engine started, however the ignition timing was almost the same as diesel fuel after the engine was warmed-up.
Technical Paper

An Analysis of Light Emission Intensity Behavior Corresponding to Intermediate Products in Different Places of the Combustion Chamber

2001-12-01
2001-01-1882
Knocking is one phenomenon that can be cited as a factor impeding efforts to improve the efficiency of spark-ignition engines. With the aim of understanding knocking better, light emission spectroscopy was applied in this study to examine preflame reactions that can be observed prior to autoignition in the combustion reaction process of hydrocarbon fuels. Attention was focused on light emission behavior at wavelengths corresponding to those of formaldehyde (HCHO), Vaidya's hydrocarbon flame band (HCO) and the OH radical in a forced progression from normal combustion to a knocking state. Light emission behavior was measured simultaneously in the center and in the end zone of the combustion chamber when the engine was operated on two different test fuels. The test fuels used were n-heptane (0 RON) and a blended fuel (70 RON) consisting of n-heptane (0 RON) and iso-octane (100 RON).
Technical Paper

An Analysis of Conditions Producing Two-Stage Main Combustion Heat Release in a Supercharged HCCI Engine using a Gaseous Fuel Blend

2015-09-01
2015-01-1785
In this study, a detailed analysis was made of supercharged HCCI combustion using a two-component fuel blend of dimethyl ether (DME), which has attracted interest as a potential alternative fuel, and methane. The quantity of fuel injected and boost pressure were varied to investigate the equivalence ratio and operating region conducive to optimal HCCI combustion. The results revealed that varying the boost pressure according to the engine load and applying a suitable equivalence ratio induced two-stage main combustion over a wide load range, making it possible to avoid excessively rapid combustion.
X